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GENERAL FORMULATION

COMPUTATIONAL experiments are reported herein to illustrate
a solution method which satisfies the governing integral
equations of radiant interchange in the least squares sense.
The problems with which we are concerned are governed
by one or more linear integral equations of the type

Hxo V5 2) = Fxp ¥, 2)
N
+ jazl 'y,,A Hxpypz) K(xy ..., 2)d4; (1)

i=12..., N. The f functions may represent either the
radiosity B, the temperature T, or the local heat flux g
(e.g [1] Chapter 3). The F; denote known functions and the
y;; are known constants; the K d4; are angle factors. To
begin the solution, each of the f; is expressed as a sum of
preassigned functions, that is

My
20 =Y Comtin o yozs  k=12,...,N. (2

m=1
The g,, are selected using all available insights, for instance,
symmetry, limiting conditions, and so forth. The C,,, are yet
to be determined.

The f; are introduced into the right-hand side of equation
(1) and the indicated integrations are performed, either
analytically (wholly or in part) or numerically as & subroutine
of the general computer program. Let the participating inte-
grals be denoted by

@
Q= [ gulx, v 2) K%, .., z) d4; A3
jm Ay

Then, after introducing the representation (2) for f; into

the left-hand side of (1) and making use of (3), the governing
integral equations (1) reduce to a set of algebraic equations

M; ) N Mj @
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m=1 im i=1 m=1 jm
D
i =1,2,... N;in which the g, Q, and F are functions of posi-
tion x, y, z;.

The set of equations (4) contains My + M, + ... My = M
unknown coefficients C. To find the C, one proceeds as
follows: The algebraic equations (4) are evaluated at a total
of P discrete positions on the participating surfaces such that
P > M, giving P linear algebraic equations for the M
unknown values of C. This mathematical system is dealt
with using least squares techniques. In particular, it has
been found highly convenient to employ the orthonormaliza-
tion subroutine,* which automatically constructs ortho-
normal functions and, with these functions, determines the
numerical values of the coefficients C. All ocal results of
interest follow directly once the f; are found. For instance,
if f cotresponds to the radiosity B then the local heat flux
for a gray diffuse surface is given by

q=¢cT* ~ BA1 - o). (&)
COMPUTATIONAL EXPERIMENTS
One-dimensional systems. Consider the parallel plate
system shown at the upper left of Fig 1. The parallel surfaces
have the same uniform temperature T and the same graybody
emittance ¢ and the external environment contains black
body radiation at temperature T,. The governing integral
equation for the radiosity is readily derived as

* The orthonormalization subroutine is listed in the
COOP manual as E2 UOFM ORTHON. A listing of the
program can also be obtained from the authors.
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F1G. 1. Radiosity distributions, second computational experiment, ¢ = 0-9.
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=1 - 2
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in which 8 = (B — 6 T%)/es(T* — T?) and Bis the radiosity.
In view of the symmetry in x, solutions are proposed in the
form

M M
B =Y Cux*™0,  fQ =3 C.&"D ()
m=1 m=1

The C,, were found by employing the orthonormalization
least squares procedure as outlined above, wherein the
participating integrals were evaluated numerically.

For any given spacing v, the most severe test of the solution
method is for small ¢ Hlustrative comparisons between the
present results and those from the numerical solutions of [2]
are shown in Table 1. Inspection of the table shows that
with only a moderate number of terms in the functional
relationship (7), the present method of solution can reproduce
the results of the numerical solution to high accuracy.
Furthermore, for values of M at which the results are in-
sensitive to further increases in M, the results were also
insensitive to the number of points P (provided, of course,
that P > M). This information can be employed to reduce
the time required to obtain a solution.

T wo-dimensional systems. Next, consider a pair of abutting
square plates as iltustrated at the upper right of Fig. 1. The
general case where the plates have different temperatures
T; and T, and the environment contains blackbody radiation

at T, can be synthesized from solutions of the fundamental

case in which T} = 1, T, = T, = 0. The plate surfaces are

gray diffuse emitters and reflectors with emittance e. The

governing integral equations for the radiosity distributions
Bjjfec = p, and Bfeo = B, are

14
Bi=1+(Q1 ‘e)ij*ﬂdeydxz’

[

Po=(—of [ B Kdzdx, (8)
0 -%

where 8, = B,(x,, 2), B, = B,(x,, y), and K(x, y) is given by
equation (4-28) of [1]. In accordance with equation (2), and
accounting for symmetry, one proposes

B1=Cy +ACyz + Ci3x} + Ciux?)
+2(Cys + Ci6 X7 + Ciox) + ... )

and analogously for f,. Also, by taking limits as y and z
approach zero, it canbe shownthat C,, = [1 ~ ) (1 —&*] ™!
and C;y = () (L — &C,;.

In applying the solution method, all of the participating
integrals were evaluated numerically. Computations were
performed for various numbers of terms M, and M, in the
functional forms for B, and B,; in addition, the number of
linear algebraic equations P was also varied. It was found
that the results were relatively insensitive to P (> M, + M,).
For purposes of comparison, a finite-difference solution was
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Table 1. Radiosity distributions B(x) for ¢ = O-1, first computational experiment

x
v M
0 01 02 03 04 05
10 2 1:642 1-637 1:620 1592 1-554 1-504
3 1-644 1-638 1620 1591 1-553 1-508
Ref. [2] 1+ 1-638 1-620 1-:591 1-553 1-508
005 2 9-694 9-444 8-695 7-447 5-699 . 3452
3 8958 8929 8739 8088 6473 3191
4 9092 8984 8651 7986 6541 3126
5 9082 8984 8-661 7-984 6-536 3120
Ref. [2] 908 898 8-66 7-98 6-54 313

performed using the linear equation subroutine of the
Control Data 6600,

Representative comparisons between the § distributions
from the two solution methods are presented in Figs. 1 and
2, respectively for ¢ = 09 and ¢ = 0-5. Distribution curves
are shown for x = 0-05 and x = 0-35 for both 8, and 8,.
(For ¢ = 09, B, is essentially unity and is not plotted.) The
results from the orthonormalization least squares solution
are for M, = M, = 13 and P = 90, while those for the
finite-difference solution are for a total of 200 nodal points,
100 on each surface. Generally good agreement prevails,

except at small values of y and z, where the finite-difference
solution is in error. Additional nodal points would have to
be added to the finite-difference grid to insure accurate
results in the neighborhood of the interface between the
plates. The distribution curves for the least squares solution
are slightly wavy, probably due to the high-degree poly-
nomials employed.

Local and overall heat transfer results were also computed.
The local heat fluxes g, and g, are determined from the
local radiosity by employing equation (5). The overall heat
transfer rates Q, and @, are given by Q = ¢ dA, the inte-
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F1G. 2. Radiosity distributions, second computational experiment, & = 0-5.
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grations being performed analytically in the case of the
least squares solution and numerically in the case of the
finite-difference solution.

Results for Q, and @, are listed in Table 2, In the {(a) and
(b) parts of the table, it is seen that the overall heat transfer is
little influenced by the number of terms M = M, + M, of
the functional representation and by the number of points P
used to generate the linear algebraic equations. The results
of the finite-difference solution, part (c), are in good agree-
ment with those of parts (a) and (b). Part (d) of the table
gives the @, and Q, values for the gross model in which
B; = constant and B, = constant.

For the conditions of Figs. 1 and 2, the computation times
of the least squares and finite-difference methods are essenti-
ally the same, about 20 s per case on the CDC 6600. How-
ever, it should be mentioned that the computation time for
the least squares method can be substantially diminished, for
instance, by reducing P or by analytical integration of some
of the participating integrals.
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Table 2. Overall heat transfer results,
second computational experiment

{a} P = 90
=09 g == 03
M o Q0 Qi/o Gala
14 0-8948 0-1660 0-4916 0-05294
20 0-8953 01632 0-4926 005165
26 0-8955 01627 0-4928 005136
(b} M = 26*
&= U9 ¢ = (3
P G/ Qi/o Qo Qilo
24* 0-8953 Q1633 0-4925 005172
90 0-8955 0-1627 0-4928 005136
132 0-8955 01627 0-4928 005133
(¢) Finite-difference solution
=09 £ =05
Nodes Q.o Q.o Qi/o Qy/a
50 0-8939 0-1837 0-4903 0-05850
98 0-8943 01777 0-4909 0-05650
162 08946 0-1743 0-4913 005535
200 0-8947 01731 04914 0-05495

(d) Gross calculation, B, =constant, B, = constant

& =09 5w 08
Qo @,/ Qyjo O,/
0-8968 01621 0-4949

005052

* Note that C,, and C,, are fixed in advance.



