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GENERAL FORMULATION 

Cb~~~~~~~~~~experiment~arereported hereintoillustrate 
a solution method which satisfies the governing integral 
equations of radiant interch~ iu the least squares sense. 
The problems with which we are concerned are governed 
by one or more linear integral equation9 of the type 

i=l,2,..., N. The j functions may represent either the 
radiosity B, the temperature T or the local heat flux 4 
(e.g. [l] Chapter 3). The F, denote known functions and the 
y,, anz known constants; the K dA, are angle factors To 
begin the solution, each of the ft is expressed as a sum of 
preassigned functions, that is 

Nxk. Yk7 rk) = ; Cknl Bkm (xki Yka rk), k = 1,2,. . . , N. (2) 
?f#=1 

The gb. are selected using a5 available insights, for instance, 
symmetry, limiting conditions, and so forth The C, are yet 
to be determined. 

Tae& are introduced into the right-hand side of equation 
(1) and the indicated integrations am perform@ either 
analytically (wholly or in part) or numerically as a subroutine 
of the general computer program. Let the participating ink- 
arals be denoted by 

: = E e&j3 Yjl 2,) w,, . . . , z,) dA, (3) 
b AJ 

Then, after introducing the representation (2) for fi into 
the left-hand side of (1) and makii use of (3X the governing 
integral equations (1) reduce to a set of algebraic equations 
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i = 1,2, . N ; in which the g, Q and F are functions of posi- 
tion xb y, zk 

The set of equations (4) contains MI + M, + MN = Xi 
unknown coekients C. To find the C, one proceeds as 
follows: The algebraic equations (4) are evaluated at a total 
of P discrete positions on the participating surfaces such that 
P 2 Ii?, giving P linear algebraic equation8 for the R 
unknown values of C. This mathematical system is dealt 
with using leaat squares techniquea In particular, it has 
beenfoundhighlyconvcnicnttocmploytbcorthono~- 
tion subroutine,* which automatically constructs ortho- 
normal functions and with these functions, determines the 
numerical values of the coefficients C. AR local results of 
interest follow directly once the fi we found For instance, 
if f corresponds to the radio&y R then tk local heat flux 
for a gray di5use surface is given by 

4 = e(UT+ - 8)l(l - E). (9 

COMPUTATIONAL. EXPERIMENTS 
One-dimensti systems. Consida the parallel plate 

system shown at the upper left of Fig 1. Tk paralld surfaces 
have the same uniform temperature Tand the same graybody 
emittance s, and the external environment contains black 
body radiation at temperatum T, The governing integral 
equation for the radio&y is readily derived as 

* The orthonormalixation subroutine is listed in the 
COOP manual as E2 UOPM ORTHON. A listing of the 
program can also be obtained from the authors. 
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FIG. 1. Radiosity distributions, second computational experiment, E = 0.9. 

in which /I = (B - aT:)/su(T4 - c) and Bis tk radios&y. 
In view of the symmetry in x, solutions are proposed in tk 
form 

The C,,, were found by employing tk orthonormalization 
least squares procedure as outlined above, wherein the 
participating integrals were evaluated numerically. 

For any give-n spacing v, tk most severe test of tk solution 
method is for sma5 a Illustrative comparisons between the 
present results and those from tk numerical solutions of [2] 
are shown in Table 1. Inspection of the table shows that 
with only a moderate number of terms in tk functional 
relationship (7), the present method of solution can reproduce 
the results of the numerical solution to high accuracy. 
Furthermore, for values of M at which the results are in- 
sensitive to further increases in M, the results were also 
insensitive to the number of points P (provided, of course, 
that P 3 M). This information can k employed to reduce 
the time required to obtain a solution. 

T nwdimensional systems. Next, consider a pair of abutting 
square plates as illustrated at tk upper right of Fig 1. The 
general case where tbe plates have different temperatures 
Ti and T2 and tk environment contains blaekbody radiation 

at T. can k synthesized from solutions of the fundamental 
case in which Tr = 1, Ts = T. = 0. Tk plate surfaces are 
gray difkse emitters and re5ectors with emittance s. The 
governing integral equations for the radiosity distributions 

B&n = & and &/~a = p2 are 

1 f 
BI = 1 +U -4J J &Kdydx,, 

0 -t 

P~=(1-E)~l)Wd.dx~ @I 

where I4 = hh, 4, Bz = MQ. YA and K(x, Y) is given by 
equation (&28) of [ 11. In accordance with equation (2), and 
accounting for symmetry, one proposes 

B, = C,, + z(C,, + C,,x: + c14x3 

+ zwi, + c,,x: + c1,x:j + (9) 

and analogously for &. Also, by taking limits as y and z 
approachxero,itcankshownthatC,, = [l -(+)(l -e)a]-i 
and C,, = 0, (1 - Wii. 

In applying the solution method, all of the participating 
integrals were evaluated numerically. Computations were 
performed for various numbers of terms A4, and M2 in the 
functional forms for fir and gs; in addition, the number of 
linear algebraic equations P was also varied. It was found 
that the results were relatively insensitive to P (3 M, + M,). 
For purposes of comparison, a finite-di5brence solution was 
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Table 1. Radio&y distributions B(x) for E = Dl,fht computational experiment 

x 
Y M 

0 01 02 03 0.4 0.5 

1-O 2 1642 1.637 1,620 1.592 1.554 1.504 
3 1.644 1.638 1.620 1.591 1.553 1.508 

Ref. [2] 1644 1.638 1.620 1.591 1.553 1.508 

005 2 
3 
4 

Ref5[2] 

9694 9.444 8695 7.447 5699 
8.958 8.929 8.739 8-088 6.473 
9.092 8.984 8.651 7.986 6541 
9.082 8.984 8661 7.984 6.536 
9.08 8.98 866 7-98 6.54 

3.452 
l 3.191 

3126 
3.120 
3.13 

performed using the linear equation subroutine of the 
Control Data 6600. 

Representative comparisons between the p distributions 
from the two solution methods am presented in Figa 1 and 
2, respectively for E = O-9 and e = 0.5. Distribution curves 
are shown for x = O-05 and x = @35 for both #I1 and /&. 
(For E = 0.9, B1 is essentially unity and is not plotted.) The 
results from the orthonormalization least squares solution 
areforM1=M,=13andP=90,whilethoseforthe 
finite-difference solution a for a total of 200 nodal points, 
100 on each surface. Generally good agreement prevails 

Y 
0 0.2 0.4 0.6 0.6 I.0 

J,~11,1,1,,,II,,,,,,,,,,1,,,,,,,,,,,,, 

except at small values of y and z, where the finitedifference 
solution is in error. Additional nodal points would have to 
be added to the finitedifferen~ grid to insure accurate 
results in the neighborhood of the interface between the 
plates The distribution curves for the least squares solution 
are slightly wavy, probably due to the high-degree poly- 
nomials employed. 

Local and overall heat transfa results were also computed. 
The local heat fluxes q1 and q2 are determined from the 
local radios&y by employing equation (5). The overall heat 
transfer rates Q1 and Q3 are give-n by Q = qdA, the inte- 
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FIG. 2. Radiosity distributions, second computational experiment, E = 0.5. 
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grations being performed analytically in the case of the 
least squares solution and numerically in the case of the 
finite-difference solution. 

Results for Q1 and Qr are listed in Table 2. In the (a) and 
(b) parts of the table, it is seen that the ovemll heat transfer is 
little intluenced by the number of terms G = M, + M, of 
the functional representation and by the number of points P 
used to generate the linear algebraic equations. The results 
of the finite-difference solution, part (c), are in good agree- 
ment with those of parts (a) and (b). Part (d) of the table 
gives the Q, and Q, values for the gross model in which 
B, = constant and gZ = constant. 

For the conditions of Figs. 1 and 2, the computation times 
of the least squares and fmite-difference methods are essenti- 
ally the same, about 20 s per case on the CDC 6600. How- 
ever, it should be mentioned that the computation time for 
the feast squares method can be substantially diminished, for 
instance, by reducing P or by anafyticaf integration of some 
of the p~ticipati~ integrals. 

A Qh Q2P Q& Q& 
_I-__~~-_~__.--- .__--. ..---...__ 

14 08948 01660 0.4916 0.05294 
20 o-8953 01632 0.4926 005165 
26 0.8955 0.1627 0.4928 0.05 t 36 

(b)& = 26* 
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t. .= 0.9 E = 0.5 
___-_ ._ _.--.-_.. __ . ..- ~__. 

P Q& Qtb QlJa Qda 
-______ 

24* 0.8953 0.1633 0.4925 0.05172 
PO 0.8955 0.1627 04928 0.05136 

132 @8955 01627 04928 @05133 

(c) Finite-difference solution 

E = o-9 E = 0‘5 
-. -._--_.-.- -.---.~~-- 

Nodes Q& Qtb Qdc Qzb 
____-.~--_..--___I. 

50 0.8939 0.1837 04903 a05850 
9x 0.8943 01777 O-4909 ~05650 

162 0.8946 0.1743 0.4913 0.05535 
200 0.8947 01731 0.4914 a.05495 

(d) Gross calculation, B, = constant, B, = constant 

._- _______-__-_-__--. 
08968 01621 0.4949 005052 

* Note that Crr and C,, are tured m advance. 


